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Evaluating the suitability of Sentinel-1 SAR data 1 

for offshore wind resource assessment around 2 

Cyprus 3 

Abstract 4 

Offshore wind offers an excellent opportunity for domestic renewable energy production with a vast 5 

potential for future energy systems. Offshore wind resource assessment, however, can be challenging. 6 

Remote sensing data e.g., Synthetic Aperture Radar (SAR), provide high spatial resolution detailed 7 

information on the spatial variability of offshore wind and have been used for wind resource 8 

assessment, as well as for the long-term validation of wind speed estimates from other sources (e.g. 9 

Numerical Weather Prediction models). This paper focuses on the evaluation of a 26-month time-10 

series of Sentinel-1 SAR Level 2 OCN products for wind resource assessment in the offshore areas 11 

around Cyprus. Sentinel data were evaluated against a 10-year regional reanalysis dataset (UERRA) 12 

time-series and wind measurements from 5 coastal meteorological stations in Cyprus. Comparison 13 

revealed an overall agreement between the fitted stations and Sentinel Weibull distributions while 14 

discrepancies exist between the two data sources and UERRA. Bias observed between Sentinel and 15 

UERRA Weibull-derived statistics appears to be spatially dependent. Preliminary wind power 16 

assessment results indicate a significant wind power potential for the southwestern offshore areas of 17 

Cyprus, surpassing 400 𝑊/𝑚2 on average, offering thus economically viable solutions in terms of a 18 

future offshore wind power project development. 19 

Keywords: Sentinel-1, Coastal meteorological stations, UERRA, Validation, Weibull.  20 

1 Introduction 21 

Renewable Energy Sources (RES), and especially wind energy, have been under the spotlight more 22 

than ever, as climate change effects are becoming more evident and severe. The growing climate 23 
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emergency signifies an unprecedented momentum for the disengagement of the energy market from 24 

the unsustainable fossil fuel-based energy production. Recent studies show that wind will be the key 25 

to facing the above challenges and drive the markets away from carbon energy [1,2]. While onshore 26 

wind technology has already reached a mature stage, offshore wind is still emerging as an attractive 27 

source of energy due to the high wind power potential that characterizes the sea. Latest figures 28 

indicate an increasing trend of annual offshore wind installation while the cumulative offshore wind 29 

capacity has already surpassed 25 GW [3]. Only in 2019, Europe has added 3.6 GW of net offshore 30 

capacity reaching 22 GW in total [4]. This is translated to hundreds of new offshore wind turbines 31 

being connected to the grid, while also highlighting the importance of offshore wind technologies for 32 

facing island-related energy issues. Cyprus, however, lags this global trend. Despite having the biggest 33 

increase in energy demand among the EU-28 since 1990, Cyprus still relies on fossil fuels imports to 34 

meet the increasing energy demands. As a consequence, Cyprus has not yet achieved the targets set 35 

by the EU regarding the use of renewable energy sources for energy consumption and the recently 36 

developed National Renewable Energy Action Plan. Due to the limited efforts made towards the 37 

assessment of its wind potential, only 13% of the total renewable energy in Cyprus is being generated 38 

from wind [5], while all of the existing wind farms have been exclusively located onshore. Further 39 

efforts should be undertaken to evaluate the country’s offshore wind potential which might comprise 40 

an opportunity for domestic renewable energy production. 41 

At a global level, several studies have been conducted up to date at various scales for assessing 42 

offshore wind resource potential taking advantage of readily available satellite data. In this context, a 43 

detailed knowledge of the spatio-temporal variations of the distribution of offshore wind is needed. 44 

This information is subsequently used from planners and decision makers for a plethora of 45 

applications ranging from wind farm sitting to spatial planning. Synthetic Aperture Radars (SAR) and 46 

scatterometers are typically exploited to retrieve the spatial distribution of wind fields along the sea 47 

surface while examples where data from both sources are fused to yield more accurate results also 48 

exist [6,7]. Although a continuous global-scale time-series of more than 20 years of wind vectors has 49 
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been developed by scatterometers, providing observations twice per day, these suffer from relatively 50 

poor spatial resolution. Another drawback of scatterometers stems from the inconsistency between 51 

data derived from different instruments [8]. NSCAT onboard ADEOS-I satellite [9], SeaWinds onboard 52 

QuikSCAT and ADEOS-II satellites [10–13], Oceansat-2/OSCAT [14], ASCAT onboard METOP-A/B 53 

satellites [15,16] and HY-2A SCAT [17,18] are some of the most widely exploited scatterometers with 54 

their spatial resolution ranging between ~12.5-50 km. SAR on the other hand, provide detailed 55 

information at a higher spatial resolution, typically around 1 km or lower. Numerous SAR sensors, such 56 

as ERS-1/2 [19–21], ENVISAT ASAR [22–24] and later TerraSAR-X [25,26] RADARSAT-1/2 [27–29] and 57 

Sentinel-1A/B [30,31], have provided the means for obtaining wind vectors over the ocean surface.  58 

Wind speed, however, is not directly measured by sensors but rather retrieved via the backscattered 59 

Normalized Radar Cross Section (NRCS) of the sea surface by utilizing a geophysical model function 60 

(GMF). In particular, CMOD functions (e.g. CMOD5, CMOD7) are typically used to retrieve the wind 61 

speed from C-band SAR images. [32–34]. Moreover, SAR provide only temporally dispersed snapshots 62 

of the wind patterns at certain atmospheric conditions [35]. Therefore, SAR wind field estimates are 63 

typically compared and/or validated against in-situ measurements, such as coastal weather 64 

monitoring stations and/or buoys, or in the case of the absence of such means, with mesoscale 65 

modeling products. 66 

Sentinel-1A/B data have been extensively used in the literature for revealing wind features that are 67 

otherwise unable to be identified, especially near the coastlines where the use of coarser resolution 68 

images (e.g. Numerical Weather Predictions) hinders the sensing operation of small-scale changes, 69 

such as the fluctuations of atmospheric conditions or surface roughness [36]. Some recent case studies 70 

include a wind energy potential analysis on the Mediterranean islands using Sentinel-1 satellite data 71 

[37] and the validation of Sentinel-1-derived wind speed against in-situ measurements around Ireland 72 

[30]. None of the previous studies carried out so far, however, has focused on the area of Cyprus on 73 

research regarding the offshore wind resource potential assessment, while only a few are related to 74 
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the wind over the Mediterranean Sea. Therefore, such an endeavor will provide an added value and 75 

benefit for economic, social and technological development at the national level while laying the 76 

groundwork for the undertaking of offshore wind farm installation projects. Prior to utilizing Sentinel-77 

1 data towards that purpose, they have to be validated against data sources characterized by longer 78 

time-series such as in-situ wind measurements from meteorological stations or widely available 79 

regional reanalysis datasets. 80 

In light of the above, this study is focused on a two-stage evaluation process. The first stage involves 81 

a statistical comparison of Sentinel-1A & 1B SAR Level 1 wind field estimates against in-situ 82 

measurements from five meteorological stations located around Cyprus coast as well as the 83 

corresponding regional reanalysis model outputs derived from a 10-year time-series. The second stage 84 

pertains to the spatio-temporal comparison between the Sentinel-1 data and UERRA regional 85 

reanalysis data over the entire area of interest. An initial estimate of the average wind power density 86 

around Cyprus along with the associated uncertainty derived via bootstrap and a preliminary 87 

assessment of the potential development and economic viability of a wind power application before 88 

being evaluated at a local scale have also been conducted. 89 

2 Data and Initial Processing 90 

2.1 Sentinel-1 Wave Mode SAR Level-2 OCN Products 91 

Sentinel-1 is a SAR constellation of the EU’s Copernicus Earth Observation program consisting of two 92 

polar orbiting satellites, Sentinel-1A & 1B, launched on 3 April 2014 and 25 April 2016, respectively. 93 

Each satellite has a near-polar, sun-synchronous orbit with a 12-day repeat cycle and 175 orbits per 94 

cycle while both are sharing the same orbital plane and operating in the C-band 24 hours daily 95 

collecting imagery. Since the two satellites share the same orbit with a 180ο orbital phasing difference, 96 

the repeat cycle is reduced to 6 days. The high spatial resolution of Sentinel-1 C-band SAR instruments 97 

provide detailed information on the spatial variability of offshore wind; hence it can be used for 98 
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offshore wind resource assessment as well as for the long-term validation of wind speed 99 

measurements from various sources. The spatial resolution of Sentinel-1 data can vary depending on 100 

the acquisition mode and the level of data processing [38]. 101 

In this work, Ocean Wind Fields (OWI) geophysical component data are used from 503 Sentinel-1 102 

Level-2 Ocean (OCN) products with a spatial resolution of 1km and a time frame from May 21, 2017 103 

until July 30, 2019 to match the corresponding time-series of the regional reanalysis dataset used. 104 

These refer to ground range gridded estimates of the surface wind speed and direction at the 10m 105 

height above the sea surface derived from Sentinel-1 Level-1 Ground Range Detected (GRD) images 106 

of Interferometric Wide (IW) Swath mode under Vertical-Vertical (VV) + Vertical Horizontal (VH) dual 107 

polarisation operation. Both Sentinel 1A and 1B satellites are recording tiles in the broader offshore 108 

Cyprus area approximately at 3:45 Coordinated Universal Time (UTC) and 15:45 UTC, leading to a 109 

(spatially partial) coverage of 1 to 2 scenes per day within a 4-day run, leaving 3 days in between 110 

without a scene.  111 

The tiles used along with the location of the five coastal weather monitoring stations are depicted 112 

with red outline in Figure 1. Tiles tilting to the right occur when both satellites are descending while 113 

tiles tilting to the left occur when the satellites are ascending. The tilting of Sentinel products and the 114 

spatial micro-variability related to satellite images specify different pseudo-grids almost for each tile. 115 

In order to bring all the information at a common basis, all values from the tile pixels were resampled 116 

to a regular square grid by assigning Sentinel’s pixel values to the closest grid node. A maximum 117 

distance of 1 pixel (~1km) was set for the resampling process to prevent long distance allocation of 118 

Sentinel-1 pixel values to the regular grid. The regular grid bounding box is shown with white outline 119 

in Figure 1. 120 
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Figure 1: Outline of the study area (white polygon), typical Sentinel tiles within a month’s period (red polygons) and weather 121 

monitoring stations 122 

All tiles partially overlap in space, resulting in different number of values for each node of the 123 

resampled grid. Data at nodes with less than 120 values as well as nodes within a 1.5 km distance from 124 

Cyprus’s coastline were discarded as SAR backscattering close to the coastal areas may be affected by 125 

several parameters, such as bathymetry and surface roughness, increasing the uncertainty of wind 126 

speed estimation on these areas [39]. The flag value is related to the inversion quality as well as the 127 

geophysical and the NRCS quality estimated. Here, all the SAR wind quality flag values of 3 were 128 

completely discarded from each image. Sentinel-1 SAR images also exhibit systematic border noise, 129 

resulting in artefacts like 0 or extremely low wind speed values at pixels lying along the east and west 130 

image edges [40]. To address this issue, the problematic image rows/columns were completely 131 

removed from these images. The resulting number of values at each node after the image pre-132 
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processing, is shown in Figure 2. Nodes with many values (~475), depicted in yellow, lie close to 133 

Larnaca, while nodes with fewer values (~250) lie close to Limnitis, Pafos and Akrotiri. 134 

 

Figure 2: Number of Sentinel values at each node 135 

2.2 Uncertainties in Ensembles of Regional Reanalyses (UERRA) 136 

UERRA regional reanalysis gridded data available by the European Centre for Medium-Range Weather 137 

Forecasts (ECMWF) is being used along the lines of this project. UERRA is a dataset derived using a 3-138 

dimensional variational data assimilation system covering the area of Europe and combining 139 

meteorological in-situ data with modelled data in order sift good-quality data. The data are available 140 

from 1961 onwards. The laws of physics allow for estimates at locations where data coverage is low. 141 

The provision of estimates at each grid point in Europe for each regular output time, over a long 142 

period, always using the same format, makes reanalysis a very convenient and popular dataset to work 143 

with. The dataset’s horizontal resolution is 11km and the temporal resolution is 6 hours, starting at 144 

00:00UTC. It provides wind speed and direction at 10m along with several other variables (e.g. relative 145 

humidity, temperature, albedo) [41]. UERRA HARMONIE/V1 model outputs, available at the spatial 146 

resolution of 11km and at a 6-hour interval, were acquired for the period of January 2009 to July 2019. 147 

UERRA data were resampled to a separate regular square grid using the nearest neighbor resampling 148 

technique. Although the UERRA cell size grid is different (11km) than the corresponding Sentinel grid, 149 
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the bounding box was preserved to allow for fair comparisons between the two datasets (Figure 5). 150 

UERRA grid data were masked to limit the information included only in the offshore area of Cyprus 151 

and a separate cutoff was set for the number of Sentinel-1 nodes contained in each UERRA cell. 152 

Therefore, UERRA cells containing less than 80 Sentinel-1 nodes were not considered.  153 

2.3 Data from Cyprus Coastal Meteorological Stations 154 

In-situ wind speed observations from five Cyprus coastal meteorological stations located at Limnitis, 155 

Famagusta, Pafos, Akrotiri, and Larnaca areas, as shown in Figure 1, were retrieved online from the 156 

NCEI GIS Map Portal available at: https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly. The database 157 

consists of global hourly and synoptic observations obtained from more than 20,000 stations 158 

worldwide. The weather information is also accompanied by the reporting format, in accordance with 159 

the international code forms. Weather information broadcasted from Cyprus meteorological stations 160 

is mainly reported in two formats, namely METAR and SYNOP. The former is a code name for an 161 

aerodrome routine meteorological report while the latter refers to surface observations coming from 162 

a fixed land station, either manned or automatic. The reporting formats are coded as FM-15 and FM-163 

12, respectively. To form a consistent wind time-series, only the weather information from METAR 164 

reports was used where both were available. Therefore, a 10-year time-series of in-situ measurements 165 

was formed between January 1, 2009-July 31, 2019 to match the corresponding UERRA time-series. 166 

Similar to the SAR data, information related to the data quality was also taken into account during the 167 

initial processing of the coastal monitoring station data. Only the data that passed all quality control 168 

checks (Q = 1) were used in this study, while data with missing values were discarded. The coordinates 169 

and elevation information of each of these stations is included in Table 1. In contrast to SAR data, 170 

meteorological stations provide direct wind speed measurements at an hourly basis and thus can be 171 

used for Sentinel data validation. The selected stations are also located at a very short distance from 172 

the coast and at a relatively flat terrain, allowing thus the comparison between the two sources of 173 

wind speed values without considering orographic effects. 174 
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Table 1: Coordinates and elevation of the five coastal meteorological stations used for data validation 175 

 Latitude Longitude Elevation (m)* 

Limnitis 35.1664 32.7369 30 

Famagusta 35.1364 33.9356 10 

Pafos 34.7154 32.4791 22 

Akrotiri 34.5833 32.9833 33 

Larnaca 34.8736 33.6173 12 

*Elevation refers to Above Mean Sea Level (AMSL) including the mast height (10m) 

Vertical extrapolation is applied to the in-situ measurements  prior to the comparison in order to bring 176 

wind speed values at the Sentinel and UERRA data height (10m above the sea surface). The most 177 

common techniques used for the vertical extrapolation of wind speed are the power and logarithmic 178 

laws. The former is known to perform better for unstable conditions while the latter is preferred when 179 

atmospheric conditions are neutral [42], as assumed here. Given the altitude of the stations as 180 

reference height, the extrapolated SAR wind speed at the stations height can be calculated as [43]: 181 

 

𝑢(𝑧𝑟) =  
ln (

𝑧𝑟

𝑧0
)

ln (
𝑧
𝑧0

)
 𝑢(𝑧) (1) 

where 𝑢(𝑧𝑟) the wind speed at the reference height (𝑚/𝑠𝑒𝑐), 𝑢(𝑧) is the wind speed at height z 182 

(𝑚/𝑠𝑒𝑐)  and 𝑧0 is the surface roughness, which was set to 0.0002 m according to the surface 183 

roughness length values given in [44]. Therefore, in-situ measurements were compared to the 184 

corresponding values of the closest nodes of Sentinel-1 SAR Level 2 OCN wind speed gridded data to 185 

calculate mismatch statistics. 186 
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3 Wind Resource Assessment 187 

Following a per-pixel analysis, empirical distribution functions are typically fitted to the data time-188 

series to derive the power density output. The statistical distributions of sample wind speed values 189 

over time are mostly positively skewed and are usually modeled using a theoretical Weibull probability 190 

distribution function (PDF); other distribution models, e.g., Gamma, have also been used. The Weibull 191 

probability density function has been widely used to fit wind speed distributions for wind energy 192 

applications as it appears to be related to the nature of the wind in certain conditions [45,46]. The 193 

theoretical PDF is fitted to the sample wind speed data by estimating the parameters (scale (α) and 194 

shape (β) parameters of the Weibull distribution), so that some measure of agreement between the 195 

model-derived and the sample statistics (or quantiles and/or probabilities) is maximized.  196 

Parameter estimation procedures include least-squares, method of moments, maximum likelihood, 197 

and variations thereof; in this study, the maximum likelihood method was adopted. Goodness-of-fit 198 

statistical tests can also be used (albeit with caution) for deciding on the adoption of alternative PDF 199 

models. Moreover, as the statistical distribution of wind speeds varies from place to place around the 200 

globe, depending upon local climate conditions, the landscape, and its surface, the Weibull 201 

distribution may vary as well, both in its shape, and in its scale value. 202 

3.1 Weibull Distribution Fitting 203 

Weibull distribution probabilities are obtained from: 204 

 
𝑓(𝑥) = (

𝑎

𝛽
) (

𝑥

𝛽
)

𝑎−1

exp [− (
𝑥

𝛽
)

𝛼

] ,    𝑥, 𝛼, 𝛽 > 0.     (2) 

For different values of α, the response of the shape of the distribution changes. When α equals 3.6, 205 

for example, the Weibull is very similar to the Gaussian distribution while for shape parameters 206 

greater than this, the Weibull density exhibits negative skewness.  207 
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The mean of the Weibull distribution can be obtained from α and β parameters by: 208 

 𝑎[𝛤(1 + 𝛽−1)] (3) 

and the variance 

by: 

𝑎2[𝛤(1 + 2𝛽−1) − 𝛤(1 + 𝛽−1)2] 
(4) 

where Γ( ) is the Gamma function. 209 

Weibull distributions fitted to the data obtained at the five Cyprus coastal meteorological stations are 210 

depicted in Figure 3: 211 

 

Figure 3: Fitted Weibull distributions to stations data 212 

Weibull distribution fitting was conducted via the method of maximum likelihood using the complete 213 

datasets over the 10-year period of interest. An overall agreement is obvious between the empirical 214 

histogram and the fitted Weibull distribution at each station location.  215 
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3.2 First Stage Statistical Comparison and Evaluation 216 

Shape and scale Weibull parameters derived from the fitted distributions of in-situ measurements 217 

were initially compared to the corresponding values of the closest UERRA node along with the 218 

Sentinel-1 values spatially lying within the UERRA pixel. The location of the closest UERRA to each 219 

station along with the corresponding Sentinel-1 nodes is shown in the following figure: 220 

 

 

Figure 4: Closest UERRA and corresponding Sentinel nodes to stations 221 

To evaluate the Sentinel-1 data against the in-situ measurements and the UERRA wind speed values, 222 

Weibull-derived scale and shape parameters from satellite data were upscaled (by averaging) within 223 

each UERRA cell after the fitting. As depicted in Figure 2, the initial Sentinel-1 data processing resulted 224 

in different number of nodes within each UERRA cell with the lowest number of Sentinel nodes being 225 

99 within the UERRA cell near Akrotiri station and the highest 117 within the closest UERRA cell to 226 

Limnitis station. The fitted Cumulative Distributions Functions (CDFs) of the in-situ data and both the 227 

UERRA and Sentinel-1 values from the closest node are shown in Figure 5 for comparison. The staircase 228 

appearance of the stations CDFs is due to the rounding of the raw data downloaded from NOAA, most 229 

probably due to conversion from the knots to 𝑚/𝑠𝑒𝑐. A visual review of the figures indicates a good 230 

fit of the Weibull distribution as CDFs are quite identical among the three data sources. Minor 231 
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discrepancies exist between the CDFs of the three data sources, allowing to conclude that there is an 232 

overall agreement between the cumulative distributions of in-situ, UERRA and satellite-derived data, 233 

apart from the Limnitis area where both the data and Weibull-derived CDFs of UERRΑ are quite distant 234 

from the corresponding distributions of stations and Sentinel-1 data. Furthermore, the errors between 235 

the CDFs do not depend on wind speed intensity, as different degrees of errors exist for certain wind 236 

speed values when comparing between the locations of interest, although low values seem to 237 

correlate particularly well between data at most of the locations.  238 

 

Figure 5: Fitted Weibull CDFs for station data and Sentinel values from nearest node 239 

Moreover, comparing the data with the fitted Weibull CDFs, allows to conclude that the Weibull fitting 240 

did not alter the relative relationship between UERRA, stations and Sentinel data in general even that 241 

some degree of bias has been introduced as anticipated. We can, therefore, use the Weibull-fitted 242 
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data to assess the wind speed and estimate the wind power density, as demonstrated in the final 243 

section. 244 

The fitted distributions parameters as well as the Weibull-derived mean and standard deviation of the 245 

three data sources are summarized in Table 2. A slight overestimation of Sentinel-1 scale parameter 246 

over the other two data sources in all the locations is evident while the shape parameter appears to 247 

be location dependent. Overall, the upscaled Sentinel Weibull parameters and statistics are higher 248 

correlated with their station counterparts rather than the ones derived from the UERRA fitted Weibull 249 

distributions. This is more obvious, when comparing the mean and standard deviation among all the 250 

available data sources. Both the mean and the standard deviation derived from the UERRA fitted 251 

Weibull distribution appear to be quite low in most of the cases comparing to the ones extracted from 252 

stations and upscaled Sentinel distributions. 253 

Table 2: Fitted Weibull parameters and statistics for stations data, closest UERRA node and upscaled Sentinel values from 254 

the closest UERRA node 255 

 Station Upscaled Sentinel UERRA 

 
Scale 

(α) 

Shape 

(β) 
Mean 

Std 

dev 

Scale 

(α) 

Shape 

(β) 
Mean 

Std 

dev 

Scale 

(α) 

Shape 

(β) 
Mean 

Std 

dev 

Limnitis 5.32 1.92 4.72 2.55 5.47 1.67 4.89 3.01 3.15 1.75 2.75 1.65 

Famagusta 4.82 2.01 4.27 2.21 5.16 2.39 4.58 2.05 4.26 1.73 3.72 2.26 

Pafos 4.55 1.89 4.04 2.22 5.03 1.67 4.50 2.80 4.21 1.85 3.67 2.09 

Akrotiri 4.50 1.58 4.04 2.62 5.24 1.53 4.72 3.14 5.14 1.97 4.47 2.41 

Larnaca 4.51 1.84 4.00 2.26 4.98 1.78 4.44 2.60 4.45 1.77 3.89 2.30 

A visual comparison between the Weibull-derived statistics from the three data sources at the areas 256 

close to each meteorological station and prior to upscaling the Sentinel parameters is depicted in 257 

Figure 6. As already stated above, a slight overestimation of the stations statistics by the Sentinel exists 258 

while UERRA Weibull-derived statistics, on the contrary, seem to slightly underestimate the in-situ 259 

measurements. UERRA mean exhibits the higher  discrepancy from the other two data sources, 260 
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especially close to Limnitis meteorological station where the difference between the Weibull-derived 261 

mean values is higher than 2 m/sec. Overall, it can be said that stations and Sentinel Weibull-derived 262 

statistics tend to agree quite well at most of the locations. UERRA parameters, on the other hand, 263 

appear unstable throughout the locations of interest as they tend to underestimate the parameters 264 

of the rest data sources except at the area of Akrotiri.  265 

 

Figure 6: Comparison between UERRA, stations and Sentinel-1 Weibull-derived statistics (mean and standard deviation) 266 

3.3 Second Stage Statistical Comparison and Evaluation 267 

In this section, we investigate the comparison between the UERRA and Sentinel with regards to the 268 

reproduction of their corresponding Weibull distributions statistics. Prior to the comparison, Sentinel 269 

Weibull parameters were upscaled (by averaging) at the level of UERRA grid size; meaning that the 270 
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average value of Weibull statistics were calculated for the Sentinel nodes located in each UERRA cell. 271 

The two data sources were initially compared in terms of the reproduction of the Weibull-derived 272 

mean and standard deviation. Areas colored in yellow correspond to higher UERRA values comparing 273 

to the Sentinel while the opposite is true for all the color shades of green and blue. The two maps of 274 

Figure 7 differ in terms of orientation of the spatial patterns of the difference between the Sentinel 275 

and UERRA Weibull-derived mean and standard deviation. In the first case (difference between the 276 

mean) a slight overestimation of the Sentinel is obvious at the areas below ~35 degrees of latitude 277 

while Sentinel mean is underestimated by the UERRA in the northern areas and especially close to 278 

Limnitis meteorological station; in accordance with the first CDF of Limnitis of Figure 5.  279 

 

Figure 7: Difference between UERRA and Sentinel Weibull-derived mean (top), and standard deviation (bottom) 280 
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A vertical separation is evident in the second case where the Weibull-derived standard deviation of 281 

the two data sources is compared. In this case, Sentinel standard deviation proves to be higher in most 282 

of the UERRA cells. This underestimation is spatially clustered around the eastern areas, especially 283 

after 34 degrees of longitude. It should be also noted that values in areas close to the coast are clearly 284 

affected by several parameters e.g., the number of Sentinel nodes, the sensor sensitivity and land 285 

orographic effects. Overall, Sentinel presents higher standard deviation values allowing to conclude 286 

that the range of its’ wind speed distribution is generally wider compared to UERRA. With the above 287 

being said, one could argue that the two data sources provide a complementary aspect in reproducing 288 

the wind speed distributions along with the associated statistics and parameters. 289 

4 Preliminary Wind Power Potential Assessment 290 

The average wind power density P in (𝑊/𝑚2), is the average kinetic energy passing through a unit of 291 

surface per unit of time and represents a key quantity in wind resource assessment studies. When 292 

wind speed time series are available, P can be estimated directly from the data as:  293 

 

𝑃(𝑠) = 0.5𝜌
1

𝛮
∑ 𝑠𝑖

3

𝑁

𝑖=1

 (5) 

where ρ is the air density (1.225 𝑘𝑔/𝑚3 at 15°C) and 𝑠𝑖 is the wind speed value. 294 

Being proportional to the cube of wind speed [47], wind-derived energy has been proved to follow 295 

Weibull distribution, typically described by scale and shape When a Weibull distribution is fitted to 296 

sample data, the average wind power density is expressed in terms of the Weibull PDF parameters (α 297 

and β) as: 298 

 
𝑃𝑤 = 0.5𝜌𝑎3𝛤 (1 +

3

𝑏
) (6) 

This is a shortcut to the estimation of wind power density via integration as: 299 

 
𝑃𝑤 = 0.5𝜌 ∫ 𝑠3𝑓 (𝑠; 𝑎, 𝑏) 𝑑𝑠 (7) 
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As the typical offshore wind turbine hub height is close to 100m, wind speed values from in-situ and 300 

satellite data were extrapolated to the above-mentioned height using equation (1) in order to 301 

estimate average wind power. Therefore, as of this point, the 100m will be the reference height for 302 

wind energy as presented in the rest of this section. Wind power density was subsequently calculated 303 

by applying equation (4) after Weibull distribution was fitted to each pixel’s time-series. Sentinel-1 304 

SAR Level-2 OCN data were primarily used to calculate wind power for offshore areas of Cyprus. As 305 

several studies have demonstrated [48–51], the offshore area around Cyprus is characterized on 306 

average by low intensity wind flows. More precisely, the power density for 5686 SAR nodes ranges 307 

between 200-250 𝑊/𝑚2 while 7917 nodes between 275-325 𝑊/𝑚2. The lowest wind power density 308 

value was found to be 94 𝑊/𝑚2, located at the northwest gulf of Cyprus approximately 0.25 decimal 309 

degrees west from Limnitis station while the highest (420 𝑊/𝑚2) lies 0.2 decimal degrees south of 310 

Akrotiri station. Figure 8 shows the average wind power density calculated over the 26-month period 311 

of interest. 312 

 313 

Figure 8: Sentinel average (Weibull-derived) wind power density (𝑊/𝑚2) over the 26-month period of interest. Isodepth 314 

contour lines of 100 and 300 meters are shown with magenta and purple colors, respectively. 315 

As wind power is mathematically proportional to the cube of wind speed, similar patterns of high and 316 

low wind speed values are expected. In particular, low wind power density values appear on average 317 

very close to the coast while the highest values (>400 𝑊/𝑚2) are clustered at the south and north 318 
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offshore parts of Cyprus, as well as some small patches east of Famagusta station. Especially the 319 

southwestern area, which combines the high wind power density with the relatively short distance to 320 

the coast, seems to offer a significant potential and an opportunity for both a power productive and 321 

economically viable solution in terms of a wind power application. Unfortunately, due to the different 322 

number of Sentinel samples at each grid cell (Fig. 2) some sharp edges also exist in the images leading 323 

to less reliable Weibull fits and therefore non-realistic wind power density patterns. A clear general 324 

picture of the satellite-derived wind power density patterns along the year in the offshore area of 325 

Cyprus can be shaped. Moreover, the reliability of the Sentinel-1 sample wind speed values will be 326 

increasing in parallel with the increase in the number of satellites passes over the area of interest. 327 

Nevertheless, Cyprus’s steep bathymetry gradient, as depicted in Figure 8, implies that any offshore 328 

wind farm installation endeavor would be economically viable at relatively small distances from the 329 

coast, even in the case of floating wind turbines. 330 

A bootstrap method was also employed to further examine the uncertainty related to the wind power 331 

density assessment as shown in Figure 9.  332 

 

Figure 9: Standard deviation of the bootstrap resampled (Weibull-derived) wind power density (𝑊/𝑚2) over the 26-month 333 

period of interest 334 
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The standard deviation obtained via a set of 100 bootstrap samples of Sentinel wind speed data 335 

associated with each node. This resulted in a set of 100 fitted Weibull distributions and a histogram of 336 

the same number of wind power density values at each node. By juxtaposing the maps from Figure 8 337 

and 9, one can clearly see that higher wind power density values are associated with higher 338 

uncertainty even though these areas do not necessarily correspond to a higher number of Sentinel 339 

nodes. Sharp edges, however, due to the difference between the number of nodes still exist.  340 

4.1 Wind Power Density Seasonal Analysis and Comparison 341 

The main seasonal properties of satellite-derived wind power density compared to the corresponding 342 

of UERRA were also investigated in this study over the 26-month period. In this study, the seasons are 343 

considered as follows: Winter (December-January-February (DJF)), Spring (March-April-May (MAM)), 344 

Summer (June-July-August (JJA)) and Fall (September-October-November (SON)). Figure 10 shows the 345 

average Sentintel-1 SAR Level 2 OCN Weibull-derived wind power density per season for the period of 346 

interest.  347 

 348 

Figure 10: Average Sentinel Weibull-derived wind power density (𝑊/𝑚2) per season over the 26-month period of interest 349 

The seasonal average Sentinel Weibull-derived wind power density patterns (Figure 10) confirm what 350 

was expected regarding the wind trends. Low intensity winds producing a wind power density of 139 351 
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(𝑊/𝑚2) on average and strong winds surpassing a wind power density of 300 (𝑊/𝑚2) on average 352 

have been estimated over the area of interest and the 26-month period for the summer and winter 353 

seasons, respectively. It should be stressed however that the particularly high wind power density 354 

values in Winter, depicted in Figure 10, are highly affected by a number of Sentinel images (~10 time 355 

instances spread over winter) where the wind speed values are estimated to be extremely high 356 

(between 15-25 𝑚 𝑠𝑒𝑐⁄ ) throughout the whole area of study. Including these images in the average 357 

wind power density calculation, results in an average additional ~200 (𝑊/𝑚2), mainly clustered in the 358 

central eastern and western offshore parts around Cyprus. High wind power density patterns of winter 359 

seem to hold until spring although power density is being gradually weakened. Autumn is associated 360 

with moderate winds which account for 225 (𝑊/𝑚2) on average. Both Summer and Autumn seasons 361 

do not seem to offer much wind resource potential favoring a wind power application in regard to the 362 

location of the higher wind power density patterns. Spring and Winter, on the other hand, offer a 363 

significant potential, especially in the areas south of Pafos and Limassol where the seawater depth 364 

would allow for an offshore wind farm installation. 365 

Similar spatial patterns are observed when visualizing the Weibull-derived UERRA average wind power 366 

density (Figure 11), albeit smoother and at lower scales.  367 

 368 

Figure 11: Average UERRA Weibull-derived wind power density (𝑊/𝑚2) per season over the 26-month period of interest 369 
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More specifically, the maximum wind power density values during the winter lie close to 400 W/m^2 370 

while the same value during the rest of the seasons ranges mostly between 150-250 W/m^2. 371 

In general, wind speed values from 3.5 to 6.5 m/sec prevail most of the time around the year, or, more 372 

precisely, from March to November. Strong wind flows are coming from the Western and Central 373 

Mediterranean region with an eastward direction before they are divided by Cyprus’s land mass. Wind 374 

speed values are then gradually decreased to ~5-6.5 m/sec. On the other hand, the lowest winds are 375 

mapped close to Larnaca and Limnitis meteorological stations where the two bays and the local 376 

topography seem to affect the local wind currents. Unfortunately, due to the different number of 377 

Sentinel samples at each grid cell some sharp edges also exist in the images leading to less reliable 378 

Weibull fits and therefore non-realistic spatial patterns. Nevertheless, a clear general picture of the 379 

satellite-derived wind power density patterns along the year in the offshore area of Cyprus can be 380 

shaped. Moreover, the reliability of the SAR sample wind speed values will be increasing in parallel 381 

with the increase in the number of satellites passes over the area of interest. For the 26-month period 382 

under investigation, the highest number of samples per season was 110-115 while the lowest, beside 383 

the pixels lying close to the coast, was close to 30. These, however, are located far from the coast 384 

where wind farm sitting seems to be non-viable due to the deep bathymetry and the large distance 385 

from the coast. 386 

5 Conclusions and Future Work 387 

In this work, Sentinel 1 SAR Level 2 OCN wind field estimates were statistically compared and validated 388 

against in-situ measurements from five meteorological stations located along Cyprus coast and UERRA 389 

regional reanalysis model outputs. Prior to the comparison, Weibull distributions were fitted to the 390 

wind time-series and both the Weibull parameters as well as the main statistics were extracted. The 391 

data and fitted CDFs seem match well, allowing to conclude that the initial values were not affected 392 

from the fitting. The first stage of the comparison showed an overall agreement between the stations 393 

and Sentinel data, while considerable discrepancies exist between the first two data sources and 394 
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UERRA. Erroneous values seem to affect the robustness of the analysis and therefore should be 395 

treated with caution. The second stage involved the comparison between Sentinel and UERRA 396 

Weibull-derived statistics over the complete study area. The deviations expressed in terms of the 397 

differences of the means proved to vary spatially, differentiating between the northern and southern 398 

parts of the area of interest.  399 

As Sentinel-1 Level 2 OCN products were validated against more accurate in-situ wind speed 400 

measurements, the wind speed distribution of these data can also be used to estimate wind power 401 

over a particular area of interest. Sentinel wind speed estimates were extrapolated to the wind turbine 402 

hub height and Weibull distributions were then fitted to each Sentinel wind speed time-series prior to 403 

estimating the wind power. Sentinel-1 SAR Level 2 OCN Weibull-derived average wind power density 404 

over the 26-month period of interest showed that particularly high wind power density values are 405 

spatially clustered in the south parts of the area of interest. The same areas are characterized by higher 406 

uncertainty in the reproduction of wind power density. An assessment of these areas, considering also 407 

the seawater depth, implies that an economically viable wind farm installation would be ideally sited 408 

close to the offshore areas close to Akrotiri and Pafos meteorological stations. Cyprus’ steep 409 

bathymetry gradient, however, highlights the need for a more detailed, local scale, assessment. The 410 

difference shape between the number of samples due to satellite swath is also obvious in the average 411 

wind power density maps estimated from SAR images. As the satellites continue to span Cyprus’s 412 

offshore area, more samples will be available leading to more reliable wind speed estimates obtained 413 

by the Sentinel-1 images. The seasonal analysis output indicated large variations between the 414 

different seasons. Particularly high wind power density values were observed during the winter along 415 

the North- and Southeast parts of the area of interest, while wind power density during summer and 416 

autumn ranges between 150-200 (𝑊/𝑚2) on average. 417 

The main drawback of Level 2 products is the short time-series which may lead to unreliable wind 418 

resource assessments in some instances. Wind retrieval from Sentinel-1 Level 1 products can also be 419 
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achieved in order to obtain a wider time-series. In particular, the Department of Wind Energy of the 420 

Technical University of Denmark has been systematically retrieving wind fields from SAR data (e.g. 421 

Sentinel-1, ENVISAT and TerraSAR-X) in order to deliver a freely availably wind archive covering the 422 

seas around Europe and other areas. Wind fields retrieved from Sentinel-1 products are available via 423 

their online portal at https://satwinds.windenergy.dtu.dk/. Therefore, future work will be focused on 424 

the comparison between wind field estimates obtained from Sentinel-1 Level 1 and Level-2 products 425 

which can be also validated against in-situ measurements from meteorological stations and/or buoys.  426 

Lastly, taking advantage of the spatial resolution of SAR data, downscaling techniques can be 427 

performed in order to spatially enhance the coarse resolution information of wind products provided 428 

by regional scale Numerical Weather Prediction (NWP) models, or, viewed alternatively, provide 429 

additional temporal information to wind resource assessments based on Sentinel-1 data. 430 
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